Brian Skinner, MIT, Boston

Jeudi 12 Avril 2018 à 14h00 Amphi Urbain, Bâtiment N RdC

Semimetals Unlimited : Unbounded electrical and thermal transport properties in nodal semimetals

Abstract :
Modern electronics is built on semiconductors, whose utility comes from their ability to operate on either side of the conductor-insulator dichotomy. For practical applications, however, semiconductors face certain unavoidable limitations imposed by the physics of Anderson localization and by the disorder introduced through doping. In this talk I discuss whether these same limitations apply to nodal semimetals, which are a novel class of three-dimensional materials that have a vanishing density of states (like insulators) but no gap to electron-hole excitations (like conductors). I show that, surprisingly, in a certain class of nodal semimetals the electronic mobility can far exceed the bounds that constrain doped semiconductors, becoming divergingly large even with a finite concentration of charged impurities. I then discuss the thermoelectric effect in semimetals, and show that their electron-hole symmetry allows for a thermopower that grows without bound under the application of a strong magnetic field. This large thermopower apparently enables the development of devices with record-large thermoelectric figure of merit.


Haut de page



À lire aussi...

Assaf Hamo, Department of Physics, Harvard University, United States

February 18, 2021 02:00 PM Paris (GMT +1) Imaging Hydrodynamic Flow in WTe2 with Cryogenic Quantum Magnetometry Hydrodynamic electron flow is a (...) 

> Lire la suite...

Luca de’ Medici,ESPCI, CNRS-PSL Research University, Paris, France

LPEM Webinar, Thursday July 9 at 2PM (Paris Time, GMT+2) by Luca de’ Medici, ESPCI, CNRS-PSL Research University, Paris, France Electronic (...) 

> Lire la suite...